CHAPTER 9

8051 TIMER
PROGRAMMING
IN ASSEMBLY AND C

— g e

e ——— ——

OBJECTIVES

Upon completion of this chapter, you will be able to:

>> List the timers of the 8051 and their associated registers
>> Describe the various modes of the 8051 timers

>> Program the 8051 timers in Assembly and C to generate time delays
>> Program the 8051 counters in Assembly and C as event counters

The 8051 has two timers/counters. They can be used either as timers to
generate a time delay or as counters to count events happening outside the micro-
controller. In Section 9.1 we see how these timers are used to generate time delays.
In Section 9.2 we show how they are used as event counters. In Section 9.3 we
use C language to program the 8051 timers.

SECTION 9.1: PROGRAMMING 8051 TIMERS

The 8051 has two timers: Timer 0 and Timer |. They can be used either as
timers or as event counters. In this section we first discuss the timers’ registers and
then show how to program the timers to generate time delays.

Basic registers of the timer

Both Timer 0 and Timer | are 16 bits wide. Since the 8051 has an 8-bit
architecture, each 16-bit timer is accessed as two separate registers of low byte and
high byte. Each timer is discussed separately.

Timer 0 registers

The 16-bit register of Timer 0 is accessed as low byte and high byte. The
low byte register is called TLO (Timer O low byte) and the high byte register is
referred to as THO (Timer O high byte). These registers can be accessed like any
other register, such as A, B, RO, R1, R2, ctc. For example, the instruction “MOV
TLO, #4FH” moves the value 4FH into TLO, the low byte of Timer 0. These reg-
isters can also be read like any other register. For example, “MOV R5, THO” saves
THO (high byte of Timer 0) in RS.

Figure 9-1. Timer 0 Registers

Timer 1 registers

Timer 1 is also 16 bits, and its 16-bit register is split into two bytes, referred
to as TL1 (Timer 1 low byte) and TH1 (Timer 1 high byte). These registers are
accessible in the same way as the registers of Timer 0.

l THI1 I

D15 p12| DIt D8 " D7

Figure 9-2. Timer 1 Registers

240

TMOD (timer mode) register

Both timers 0 and | use the same register, called TMOD, to set the various
timer operation modes. TMOD is an 8-bit register in which the lower 4 bits arc
set aside for Timer 0 and the upper 4 bits for Timer 1. In each case, the lower 2
bits are used to set the timer mode and the upper 2 bits to specify the operation.
These options are discussed next.

(MSB) (LSB)

GATE | CT | Mi | Mo JGATE] o1 | M1 | Mo
Timer 1 Timer 0

GATE Gating control when set. The timer/counter is enabled only while the INTx pin
is high and the TRx control pin is set. When cleared, the timer is enabled
whenever the TRx control bit is set.

C/T Timer or counter selected cleared for timer operation (input from internal
system clock). Set for counter operation (input from Tx input pin).

M1 Mode bit 1

MO0 Mode bit 0

M1 MO Mode Operating Mode

0 0 0 13-bit timer mode
8-bit timer/counter THx with TLx as 5-bit prescaler
0 1 1 16-bit timer mode

16-bit timer/counters THx and TLx are cascaded; there is
no prescaler

1 0 2 8-bit auto reload
8-bit auto reload timer/counter; THx holds a value that is
to be reloaded into TLx each time it overflows.

1 1 3 Split timer mode

Figure 9-3. TMOD Register

M1, MO

MO and M1 select the timer mode. As shown in Figure 9-3, there are three }
modes: 0, 1, and 2. Mode 0 is a 13-bit timer, mode 1 is a 16-bit timer, and mode 2 l
is an 8-bit timer. We will concentrate on modes 1 and 2 since they are the ones |
used most widely. We will soon describe the characteristics of these modes, after
describing the rest of the TMOD register. l

C/T (clock/timer)

This bit in the TMOD register is used to decide whether the timer is used
as a delay generator or an event counter. If C/T =0, it is used as a timer for time
delay generation. The clock source for the time delay is the crystal frequency of
the 8051. This section is concerned with this choice. The timer’s use as an event
counter is discussed in the next section.

U HAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 241

Example 9-1

Indicate which mode and which timer are selected for each of the following.
(a) MOV TMOD, #01H (b) MOV TMOD, #20H (c) MOV TMOD, #12H

Solution:

We convert the values from hex to binary. From Figure 9-3 we have:

(a) TMOD 00000001, mode 1 of Timer 0 is selected.
(b) TMOD 00100000, mode 2 of Timer 1 is selected.

(c) TMOD 00010010, mode 2 of Timer 0, and mode 1 of
Timer 1 are selected.

Clock source for timer

As you know, every timer needs a clock pulse to tick. What is the source
of the clock pulse for the 8051 timers? If C/T =0, the crystal frequency attached
to the 8051 is the source of the clock for the timer. This means that the size of the
crystal frequency attached to the 8051 also decides the speed at which the 8051
timer ticks. The frequency for the timer is always 1/12th the frequency of the crys-
tal attached to the 8051. See Example 9-2.

Example 9-2

Find the timer’s clock frequency and its period for various 8051-based systems, with the
following crystal frequencies.

(a) 12 MHz

(b) 16 MHz

(¢) 11.0592 MHz

Solution:

XTAL
oscillator

(a) 1/12 X 12 MHz 1 MHz and T = 1/1 MHz = 1 uUs
(b) 1/12 X 16 MHz 1.333 MHz and T = 1/1.333 MHz = .75 Us

(c) 1/12 x 11.0592 MHz = 921.6 kHz;
T = 1/921.6 kHz = 1.085 Us

NOTE THAT 8051 TIMERS USE 1/12 OF XTAL FREQUENCY,
REGARDLESS OF MACHINE CYCLE TIME.

242

Although various 8051-based systems have an XTAL frequency of 10
MHz to 40 MHz, we will concentrate on the XTAL frequency of 11.0592 MHz.
The reason behind such an odd number has to do with the baud rate for serial com-
munication of the 8051. XTAL = 11.0592 MHz allows the 8051 system to com-
municate with the IBM PC with no errors, as we will see in Chapter 10.

GATE

The other bit of the TMOD register is the GATE bit. Noticc in the TMOD
register of Figure 9-3 that both Timers 0 and 1 have the GATE bit. What is its pur-
pose? Every timer has a means of starting and stopping. Some timers do this by
software, some by hardware, and some have both software and hardware controls.
The timers in the 8051 have both. The start and stop of the timer are controlled by
way of software by the TR (timer start) bits TR0 and TR1. This is achieved by the
instructions “SETB TR1” and “CLR TR1” for Timer 1, and “SETB TRO” and
“CLR TRO” for Timer 0. The SETB instruction starts it, and it is stopped by the
CLR instruction. These instructions start and stop the timers as long as GATE =
0 in the TMOD register. The hardware way of starting and stopping the timer by
an external source is achieved by making GATE = 1 in the TMOD register.
However, to avoid further confusion for now, we will make GATE = 0, meaning
that no external hardware is needed to start and stop the timers. In using software
to start and stop the timer where GATE = 0, all we need are the instructions “SETB
TRx” and “CLR TRx”. The use of external hardware to stop or start the timer is
discussed in Chapter 11 when interrupts are discussed.

Example 9-3

Find the value for TMOD if we want to program Timer 0 in mode 2, use 8051 XTAL
for the clock source, and use instructions to start and stop the timer.

Solution:

TMOD= 0000 0010 Timer 0, mode 2,
C/T = 0 to use XTAL clock source, and
gate = 0 to use internal (software)
start and stop method.

Now that we have this basic understanding of the role of the TMOD regis-
ter, we will look at the timer’s modes and how they are programmed to create a
time delay. Because modes 1 and 2 are so widely used, we describe each of them
in detail.

Mode 1 programming

The following are the characteristics and operations of mode 1:
1. Itis a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded
into the timer’s registers TL and TH.
2. After TH and TL are loaded with a 16-bit initial value, the timer must be start-
ed. This is done by “SETB TRO” for Timer 0 and “SETB TR1” for Timer 1.
3. After the timer is started, it starts to count up. It counts up until it reaches its

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 243

limit of FFFFH. When it rolls over from FFFFH to 0000, it sets high a flag bit
called TF (timer flag). This timer flag can be monitored. When this timer flag
is raised, one option would be to stop the timer with the instructions
“CLR TRO” or “CLR TR1”, for Timer 0 and Timer [, respectively. Again, it
must be noted that each timer has its own timer flag: TFO for Timer 0, and TF1 for
Timer 1.

After the timer reaches its limit and rolls over, in order to repeat the process
the registers TH and TL must be reloaded with the original value, and TF must
be reset to 0.

LIt

XTAL =+ 12 ‘
oscillator l

TR

TH | TL |—>|TF]

TF goes high

CT=0 when FFFF >0 flag

Steps to program in mode 1

To generate a time delay, using the timer’s mode 1, the following steps are
taken. To clarify these steps, see Example 9-4.

1. Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is
to be used and which timer mode (0 or 1) is selected.

2. Load registers TL and TH with initial count values.

3. Start the timer.

4. Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruc-
tion to see if it is raised. Get out of the loop when TF becomes high.

5. Stop the timer.

6. Clear the TF flag for the next round.

7. Go back to Step 2 to load TH and TL again.

To calculate the exact time delay and the square wave frequency generat-
ed on pin P1.5, we need to know the XTAL frequency. See Example 9-5.

From Example 9-6 we can develop a formula for delay calculations using
mode 1 (16-bit) of the timer for a crystal frequency of XTAL = 11.0592 MHz.
This is given in Figure 9-4. The scientific calculator in the Accessories directory
of Microsoft Windows can help you to find the TH, TL values. This calculator
supports decimal, hex, and binary calculations.

(a) in hex (b) in decimal

(FFFF - YYXX + 1) X 1.085 us Convert YYXX values of the
where YYXX are TH, TL initial ||TH,TL register to decimal to
values respectively. Notice get a NNNNN decimal number,
that values YYXX are in hex. then (65536 - NNNNN) x 1.085

Figure 9-4. Timer Delay Calculation for XTAL = 11.0592 MHz

244

Example 9-4

In the following program, we are creating a square wave of 50% duty cycle (with equal
portions high and low) on the P1.5 bit. Timer 0 is used to generate the time delay.

Analyze the program.
MOV TMOD, #01 ;Timer 0, mode 1(16-bit mode)
HERE : MOV TLO, #0F2H ;TLO = F2H, the Low byte
MOV THO, #0FFH ;THO = FFH, the High byte
CPL P1.5 ;toggle P1.5
ACALL DELAY
SJMP HERE ;load TH, TL again
 ;——delay using Timer 0
JELAY
SETB TRO ;start Timer 0
AGAIN: JNB TF0, AGAIN jmonitor Timer 0 flag until
;it rolls over
CLR TRO ;stop Timer 0
CLR TFO iclear Timer 0 flag
RET
Solution:

In the above program notice the following steps.

TMOD is loaded.

FFF2H is loaded into THO - TLO.

P1.5 is toggled for the high and low portions of the pulse.

The DELAY subroutine using the timer is called.

In the DELAY subroutine, Timer 0 is started by the “SETB TRO” instruction.
Timer O counts up with the passing of each clock, which is provided by the crystal
oscillator. As the timer counts up, it goes through the states of FFF3, FFF4, FFFS,
FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it reaches FFFFH. One more
clock rolls it to 0, raising the timer flag (TFO = 1). At that point, the JNB instruction
falls through.

7. Timer 0 is stopped by the instruction “CLR TR0”. The DELAY subroutine ends,
and the process is repeated.

ol o

o

Notice that to repeat the process, we must reload the TL and TH registers and start the

timer again.
@_.@_, IOEG
TF=0 TF=0 TF=0 TF=0 TF =

HAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 245

Example 9-5

In Example 9-4, calculate the amount of time delay in the DELAY subroutine generat-
ed by the timer. Assume that XTAL = 11.0592 MHz.

Solution:

The timer works with a clock frequency of 1/12 of the XTAL frequency; therefore, we ©
have 11.0592 MHz / 12 = 921.6 kHz as the timer frequency. As a result, each clock has ¢
a period of T=1/921.6 kHz = 1.085 ps. In other words, Timer 0 counts up each 1.085 |
us resulting in delay = number of counts X 1.085 ps. ,
The number of counts for the rollover is FFFFH — FFF2H = ODH (13 decimal).
However, we add one to 13 because of the extra clock needed when it rolls over from
FFFF to 0 and raises the TF flag. This gives 14 x 1.085 ps = 15.19 ps for half the pulse.
For the entire period T = 2 X 15.19 us = 30.38 us gives us the time delay generated by
the timer. ‘

Example 9-6

In Example 9-5, calculate the frequency of the square wave generated on pin P1.5.
Solution:

In the time delay calculation of Example 9-5, we did not include the overhead due to
instructions in the loop. To get a more accurate timing, we need to add clock cycles due
to the instructions in the loop. To do that, we use the machine cycles from Table A-1 in
Appendix A, as shown below.

Cycles
MOV TLO, #0F2H 2
MOV THO, #O0FFH
CPL P1.5
ACALL DELAY
SJMP HERE
delay using Timer 0

SETB TRO

JNB TFO,AGAIN
CLR TRO

CLR TFO

RET

Total 28

T=2x 28 x 1.085 ps = 60.76 ps and F = 16458.2 Hz.

NOTE THAT 8051 TIMERS USE 1/12 OF XTAL FREQUENCY,
REGARDLESS OF MACHINE CYCLE TIME.

246

Example 9-7

- Find the delay generated by Timer 0 in the following code, using both of the methods
of Figure 9-4. Do not include the overhead due to instructions.

CLR P2.3 ;clear P2.3

MOV TMOD, #01 ;Timer 0, mode 1(16-bit mode)
HERE: MOV TLO,#3EH iTLO = 3EH, Low byte
| MOV THO, #0B8H ;THO = B8H, High byte

SETB P2.3 ;SET high P2.3

SETB TRO ;start Timer 0
AGAIN: JNB TFO,AGAIN jmonitor Timer 0 flag

CLR TRO ;stop Timer 0

CLR TFO iclear Timer 0 flag for

;next round
CLR P2.3

Solution:

(a) (FFFF -B83E +1) = 47C2H = 18370 in decimal and 18370 x 1.085 us =19.93145
ms.

(b) Since TH - TL = B83EH = 47166 (in decimal) we have 65536 - 47166 = 18370.
This means that the timer counts from BS3EH to FFFFH. This plus rolling over to
0 goes through a total of 18370 clock cycles, where each clock is 1.085 ps in dura-
tion. Therefore, we have 18370 x 1.085 us = 19.93145 ms as the width of the pulse.

Example 9-8

Modify TL and TH in Example 9-7 to get the largest time delay possible. Find the delay
inms. In your calculation, exclude the overhead due to the instructions in the loop.

Solution:

To get the largest delay we make TL and TH both 0. This will count up from 0000 to
FFFFH and then roll over to zero.

CLR P2.3 ;clear P2.3

MOV TMOD, #01 ;Timer 0, mode 1(16-bit mode)
HERE: MOV TLO, #0 ;TLO = 0, Low byte

MOV THO, #0 iTHO = 0, High byte

SETB P2.3 ;SET P2.3 high

SETB TRO ;start Timer 0
AGAIN: JNB TFO0,AGAIN ;monitor Timer 0 flag

CLR TRO ;stop Timer 0

CLR TFO iclear Timer 0 flag

CLR P2.3

Making TH and TL both zero means that the timer will count from 0000 to FFFFH, and
then roll over to raise the TF flag. As a result, it goes through a total of 65536 states.
Therefore, we have delay = (65536 - 0) x 1.085 ys = 71.1065 ms.

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 247

Example 9-9

The following program generates a square wave on pin P1.5 continuously using Timer 1
for a time delay. Find the frequency of the square wave if XTAL = 11.0592 MHz. In
your calculation do not include the overhead due to instructions in the loop.

MOV TMOD, #10H ;Timer 1, mode 1(1l6-bit)
MOV TL1,#34H ;TL1 = 34H, Low byte
MOV TH1,#76H ;TH1 = 76H, High byte
; (7634H = timer value)
SETB TR1 ;start Timer 1
JNB TF1,BACK ;stay until timer rolls over
CLR TR1 ;stop Timer 1
CPL P1.5 ;comp. P1.5 to get hi, 1lo
CLR TF1 ;clear Timer 1 flag
SJMP AGAIN ;reload timer since Mode 1
;is not auto-reload

Solution:

In the above program notice the target of SIMP. In mode 1, the program must reload the
TH, TL register every time if we want to have a continuous wave. Now the calculation.
Since FFFFH - 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276 clock count.
35276 x 1.085 ps = 38.274 ms for half of the square wave. The entire square wave
length is 38.274 x 2 = 76.548 ms and has a frequency = 13.064 Hz.

Also notice that the high and low portions of the square wave pulse are equal. In the
above calculation, the overhead due to all the instructions in the loop is not included.

In Examples 9-7 and 9-8, we did not reload TH and TL since it was a sin-
gle pulse. Look at Example 9-9 to see how the reloading works in mode 1.

Finding values to be loaded into the timer

Assuming that we know the amount of timer delay we need, the question
is how to find the values needed for the TH, TL registers. To calculate the values
to be loaded into the TL and TH registers look at Example 9-10 where we use crys-
tal frequency of 11.0592 MHz for the 8051 system.

Assuming XTAL = 11.0592 MHz from Examplc 9-10 we can use the fol-
lowing steps for finding the TH, TL registers’ values.

1. Divide the desired time delay by 1.085 ps.

2. Perform 65536 - n, where n is the decimal value we got in Step 1.

3. Convert the result of Step 2 to hex, where yyxx is the initial hex value to be
loaded into the timer’s registers.

4. Set TL=xxand TH = yy.

Example 9-10

Assume that XTAL = 11.0592 MHz. What value do we need to load into the timer’s reg-
isters if we want to have a time delay of 5 ms (milliseconds)? Show the program for
Timer 0 to create a pulse width of 5 ms on P2.3.

Solution:

Since XTAL = 11.0592 MHz, the counter counts up every 1.085 ps. This means that out
of many 1.085 ps intervals we must make a 5 ms pulse. To get that, we divide one by
the other. We need 5 ms / 1.085 ps = 4608 clocks. To achieve that we need to load into
TL and TH the value 65536 - 4608 = 60928 = EE00OH. Therefore, we have TH = EE and
TL = 00.

CLR P2.3 ;Cclear P2.3

MOV TMOD, #01 ;Timer 0, mode 1 (16-bit mode)
HERE: MOV TLO,#0 ;TLO = 0, Low byte

MOV THO, #0EEH ;THO = EE(hex), High byte

SETB P2.3 ;SET P2.3 high

SETB TRO ;start Timer O
AGAIN: JNB TFO0,AGAIN jmonitor Timer 0 flag

;until it rolls over

CLR P2.3 ;clear P2.3

CLR TRO ;stop Timer 0

CLR TFO ;clear Timer 0 flag

Example 9-11

Assuming that XTAL = 11.0592 MHz, write a program to generate a square wave of 2
kHz frequency on pin P1.5,

Solution:

This is similar to Example 9-10, except that we must toggle the bit to generate the
square wave. Look at the following steps.

(a) T=1/f=1/2kHz=500 ps the period of the square wave.

(b) 1/2 of it for the high and low portions of the pulse is 250 ps.

(c) 250 us / 1.085 us = 230 and 65536 — 230 = 65306, which in hex is FF1AH.

(d) TL = 1AH and TH = FFH, all in hex. The program is as follows.

MOV TMOD, #10H ;Timer 1, mode 1(16-bit)
AGAIN: MOV TL1,#1AH ;TL1=1AH, Low byte
MOV TH1, #OFFH ;TH1=FFH, High byte
SETB TR1 ;start Timer 1
BACK: JNB TF1l,BACK ;stay until timer rolls over
CLR TRl ;stop Timer 1
CPL Pl.5 ;complement P1.5 to get hi, lo
CLR TF1 ;jclear Timer 1 flag
SIJMP AGAIN ;reload timer since mode 1

;is not auto-reload

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 249

Example 9-12

Assuming XTAL = 11.0592 MHz, write a program to generate a square wave of 50 Hz
frequency on pin P2.3.

Solution:

Look at the following steps.

(@) T=1/50 Hz = 20 ms, the period of the square wave.

(b) 1/2 of it for the high and low portions of the pulse = 10 ms

(c) 10 ms / 1.085 us = 9216 and 65536 - 9216 = 56320 in decimal, and in hex it is
DCOO0H.

(d) TL = 00 and TH = DC (hex)

The program follows.

MOV TMOD, #10H ;Timer 1, mode 1 (16-bit)

MOV TL1, #00 iTL1 = 00, Low byte

MOV TH1, #0DCH ;iTH1 = DCH, High byte

SETB TR1 ;start Timer 1

JNB TF1,BACK istay until timer rolls over

CLR TR1 istop Timer 1

CPL P2.3 ;comp. P2.3 to get hi, lo

CLR TF1 iclear Timer 1 flag

SJMP AGAIN ireload timer since mode 1
;1s not auto-reload

Generating a large time delay

As we have seen in the examples so far, the size of the time delay depends
on two factors, (a) the crystal frequency, and (b) the timer’s 16-bit register in mode
1. Both of these factors are beyond the control of the 805] programmer. We saw
earlier that the largest time delay is achieved by making both TH and TL zero.
What if that is not enough? Example 9-13 shows how to achieve large time delays.

Using Windows calculator to find TH, TL

The scientific calculator in Microsoft Windows is a handy and easy-to-use
tool to find the TH, TL values. Assume that we would like to find the TH, TL val-
ues for a time delay that uses 35,000 clocks of 1.085 us. The following steps show
the calculation.

. Bring up the scientific calculator in MS Windows and select decimal.

. Enter 35,000.

. Select hex. This converts 35,000 to hex, which is 88B8H.

. Select +/- to give -35000 decimal (7748H).

. The lowest two digits (48) of this hex value are for TL and the next two (77)
are for TH. We ignore all the Fs on the left since our number is 16-bit data.

Example 9-13

Examine the following program and find the time delay in seconds. Exclude the over-
head due to the instructions in the loop.

MOV TMOD, #10H ;Timer 1, mode 1(1l6-bit)
MOV R3,#200 ;counter for multiple delay
AGAIN: MOV TL1,#08H ;TL1 = 08, Low byte
MOV TH1,#01H ;TH1 = 01, High byte
SETB TR1 ;start Timer 1
BACK: JNB TF1,BACK ;stay until timer rolls over
CLR TR1 ;stop Timer 1
CLR TF1 ;clear Timer 1 flag
DJNZ R3,AGAIN ;if R3 not zero then

;reload timer
Solution:

TH - TL = 0108H = 264 in decimal and 65536 - 264 = 65272. Now 65272 x 1.085 ps
— 70.820 ms, and for 200 of them we have 200 x 70.820 ms = 14.164024 seconds.

Mode 0

Mode 0 is exactly like mode 1 except that it is a 13-bit timer instead of 16-
bit. The 13-bit counter can hold values between 0000 to 1FFFH in TH — TL.
Therefore, when the timer reaches its maximum of 1FFH, it rolls over to 0000, and
TF is raised.

Mode 2 programming

The following are the characteristics and operations of mode 2.

1. Itis an 8-bit timer; therefore, it allows only values of 00 to FFH to be loaded
into the timer’s register TH.

2. After TH is loaded with the 8-bit value, the 8051 gives a copy of it to TL. Then
the timer must be started. This is done by the instruction “SETB TRO0” for
Timer 0 and “SETB TR1” for Timer 1. This is just like mode 1.

3. After the timer is started, it starts to count up by incrementing the TL register.
It counts up until it reaches its limit of FFH. When it rolls over from FFH to
00, it sets high the TF (timer flag). If we are using Timer 0, TFO goes high; if
we are using Timer 1, TF1 is raised.

-
| fl
' - overflow
XTAL |}——] +12 I——D— 1k flag
illat i :
oseriator ~“oad TF goes high
= TR when FF =0
CT=0 TH
| [T]

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 251

4. When the TL register rolls from FFH to 0 and TF is set to 1, TL is reloaded
automatically with the original value kept by the TH register. To repeat the
process, we must simply clear TF and let it go without any need by the pro-
grammer to reload the original value. This makes mode 2 an auto-reload, in
contrast with mode 1 in which the programmer has to reload TH and TL.

It must be emphasized that mode 2 is an 8-bit timer. However, it has an
auto-reloading capability. In auto-reload, TH is loaded with the initial count and
a copy of it is given to TL. This reloading leaves TH unchanged, still holding a
copy of the original value. This mode has many applications, including setting the
baud rate in serial communication, as we will see in Chapter 10.

Steps to program in mode 2

To generate a time delay using the timer’s mode 2, take the following steps.
_ Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is
to be used, and select the timer mode (mode 2).
. Load the TH registers with the initial count value.
. Start the timer.
. Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruc-
tion to see whether it is raised. Get out of the loop when TF goes high.
. Clear the TF flag.
. Go back to Step 4, since mode 2 is auto-reload.
Example 9-14 illustrates these points. To achicve a larger delay, we can use
multiple registers as shown in Example 9-15.

Example 9-14

ated on pin P1.0 in the following program, and (b) the smallest frequency achievable in
this program, and the TH value to do that.

MOV TMOD, #20H ;Tl/mode 2/8-bit/auto-reload
MOV THI1,#5 ;THL = 5

SETB TR1 ;start Timer 1

JNB TF1,BACK ;stay until timer rolls over
CPL P1.0 ;comp. P1.0 to get hi, lo
CLR TF1 ;clear Timer 1 flag

SJMP BACK ;mode 2 is auto-reload

Solution:

it is auto-reload. Now (256 — 05) x 1.085 us = 251 x 1.085 ps = 272.33 us is the
high portion of the pulse. Since it is a 50% duty cycle square wave, the period T 15

kHz.

(b) To get the smallest frequency, we need the largest T and that is achieved when TH
= 00. In that case, we have T =2 x 256 X 1.085 ps = 555.52 ps and the frequency
= 1.8 kHz.

252

Assuming that XTAL = 11.0592 MHz, find (a) the frequency of the square wave gener- |

(a) First notice the target address of SIMP. In mode 2 we do not need to reload TH sinee |

twice that; as a result T = 2 x 272.33 ps = 544.67 ps and the frequency = 1.83597 1

Example 9-15
Find the frequency of a square wave generated on pin P1.0.
Solution:
MOV TMOD, #2H :Timer 0, mode 2
; (8-bit, auto-reload)
MOV THO, #0 ; THO=0
AGAIN: MOV R5, #250 ;count for multiple delay
ACALL DELAY
CPL P1.0 ;toggle P1.0
SIJMP AGAIN ;repeat
DELAY: SETB TRO ;start Timer O
BACK: JNB TFO,BACK ;stay until timer rolls over
CLR TRO ;stop Timer O
CLR TFO ;clear TF for next round
DJNZ R5,DELAY
RET
T=2(250 x 256 x 1.085 ps)=138.88 ms, and frequency =72 Hz.

Example 9-16

Assuming that we are programming the timers for mode 2, find the value (in hex) loaded
into TH for each of the following cases.

(a) MOV TH1, #-200 (b) MOV THO, #-60
(c) MOV TH1, #-3 (d) MOV TH1, #-12
(e) MOV THO, #-48

Solution:

You can use the Windows scientific calculator to verify the results provided by the
assembler. In Windows calculator, select decimal and enter 200. Then select hex, then
+/- to get the TH value. Remember that we only use the right two digits and ignore the
rest since our data is an 8-bit data. The following is what we get.

Decimal 2’s complement (TH value)
-200 38H
-60 C4H
-3 FDH
-12 F4H
-48 DOH

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 253

Assemblers and negative values

Since the timer is 8-bit in mode 2, we can let the assembler calculate the
value for TH. For example, in “MOV TH1, #-100", the assembler will calculate
the 100 = 9C, and makes THI = 9C in hex. This makes our job easier.

Example 9-17

Find (a) the frequency of the square wave generated in the following code, and (b) the
duty cycle of this wave.

MOV TMOD, #2H ;Timer 0, mode 2
; (8-bit, auto-reload)
MOV THO,#-150 ;THO = 6AH = 2’s comp of -150
SETB P1.3 ;P1.3 = 1
ACALL DELAY
ACALL DELAY
CLR P1.3 ;P1.3 = 0
ACALL DELAY
SJMP AGAIN

SETB TRO ;start Timer O

JNB TF0,BACK ;stay until timer rolls over
CLR TRO ;stop Timer O

CLR TFO ;clear TF for next round
RET

Solution:

For the TH value in mode 2, the conversion is done by the assembler as long as we enter
a negative number. This also makes the calculation easy. Since we are using 150
clocks, we have time for the DELAY subroutine = 150 x 1.085 ps = 162 ps. The high
portion of the pulse is twice that of the low portion (66% duty cycle). Therefore, we
have: T = high portion + low portion = 325.5 ps + 162.25 ps = 488.25 ps and frequen-
cy = 2.048 kHz.

Notice that in many of the time delay calculations we have ignored the
clocks caused by the overhead instructions in the loop. To get a more accurate
time delay, and hence frequency, you need to include them. If you use a digital
scope and you don’t get exactly the same frequency as the one we have calculat-
ed, it is because of the overhead associated with those instructions.

In this section, we used the 8051 timer for time delay gencration.
However, a more powerful and creative usc of these timers is to use them as cvent
counters. We discuss this use of the counter next.

Review Questions

1. How many timers do we have in the 8051?

2. Each timer has registers that are __ bits wide.

3. TMOD register is a(n) __-bit register.

4. True or false. The TMOD register is a bit-addressable register.

5. Indicate the selection made in the instruction “MOV TMOD, #20H".

6. Inmode 1, the counter rolls over when it goesfrom _ to

7. In mode 2, the counter rolls over when it goes from ____to .

8. In the instruction “MOV TH1, #-200", find the hex value for the TH register.

9. To get a 2-ms delay, what number should be loaded into TH, TL using mode
1? Assume that XTAL = 11.0592 MHz.

10

. To get a 100-ps delay, what number should be loaded into the TH register using
mode 2? Assume XTAL = 11.0592 MHz.

SECTION 9.2: COUNTER PROGRAMMING

In the last section we used the timer/counter of the 8051 to generate time
delays. These timers can also be used as counters counting events happening out-
side the 8051. The use of the timer/counter as an event counter is covered in this
section. As far as the use of a timer as an event counter is concerned, everything
that we have talked about in programming the timer in the last section also applies
to programming it as a counter, except the source of the frequency. When the
timer/counter is used as a timer, the 8051s crystal is used as the source of the fre-
quency. When it is used as a counter, however, it is a pulse outside the 8051 that
increments the TH, TL registers. In counter mode, notice that the TMOD and TH,
TL registers are the same as for the timer discussed in the last section; they even
have the same names. The timer’s modes are the same as well.

C/T bit in TMOD register

Recall from the last section that the C/T bit in the TMOD register decides
the source of the clock for the timer. If C/T = 0, the timer gets pulses from the
crystal. In contrast, when C/T = 1, the timer is used as a counter and gets its puls-
es from outside the 8051. Therefore, when C/T = 1, the counter counts up as puls-
es are fed from pins 14 and 15. These pins are called TO (Timer 0 input) and T1
(Timer 1 input). Notice that these two pins belong to port 3. In the case of Timer
0, when C/T = 1, pin P3.4 provides the clock pulse and the counter counts up for
each clock pulse coming from that pin. Similarly, for Timer 1, when C/T = | each
clock pulse coming in from pin P3.5 makes the counter count up.

Table 9-1: Port 3 Pins Used For Timers 0 and 1

Pin Port Pin Function Description
14 P34 TO Timer/Counter 0 external input
15 P33 Tl Timer/Counter 1 external input
(MSB) (LSB)
GATE | C/T | MI [M0 JGATE] €T | MI | Mo
Timer 1 Timer 0

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C

Example 9-18

Solution:

MOV TMOD, #01100000B
MOV
SETB
SETB
MOV
MOV
JNB
CLR
CLR
SJMP

TH1, #0
P3.5

TR1

A, TL1
P2,A
TF1,BACK
TR1

TF1
AGAIN

allow pulses to be fed into it.

P2 is connected to 8 LEDs
and input T1 to pulse.

Assuming that clock pulses are fed into pin T1, write a program for counter 1 in mode
2 to count the pulses and display the state of the TL1 count on P2.

;counter 1, mode 2,C/T=1
;external pulses
;clear TH1

;make T1 input

;start the counter
;get copy of count TL1
;display it on port 2
;keep doing it if TF=0
;stop the counter 1
;make TF=0

;keep doing it

Notice in the above program the role of the instruction “SETB P3.5”. Since
ports are set up for output when the 8051 is powered up, we make P3.5 an input port by
making it high. In other words, we must configure (set high) the T1 pin (pin P3.5) to

8051

P2

LT

In Example 9-18, we use Timer | as an event counter where it counts up as
clock pulses are fed into pin 3.5. These clock pulses could represent the number
of people passing through an entrance, or the number of wheel rotations, or any

other event that can be converted to pulses.

In Example 9-18, the TL data was displayed in binary. In Example 9-19,
the TL registers are converted to ASCII to be displayed on an LCD.

I LIl overflow
Timer 0 flag

ternal |
ielfpilgna :>—|THO JTLO—|TFO|
pin 3.4 I__

C/T=1 TRO

TFO goes high
when FFFF =0

JLIL overflow
Timer 1 flag

t | —
exioral ")-{THI[TLT}—>{7r]
pin 3.5 [—~__-

C/T=1 TRI

TF1 goes high
when FFFF =0

Figure 9-5. (a) Timer 0 with External Input
(Mode 1)

(b) Timer 1 with External Input (Mode 1)

256

Example 9-19

Assume that a 1-Hz frequency pulse is connected to input pin 3.4. Write a program to
display counter 0 on an LCD. Set the initial value of THO to -60.

Solution:

To display the TL count on an LCD, we must convert 8-bit binary data to ASCII. Sec
Chapter 6 for data conversion.

ACALL LCD_SET UP ;initialize the LCD

MOV TMOD, #00000110B ; counter 0,mode 2,C/T=1

MOV THO, #-60 ;jcounting 60 pulses

SETB P3.4 ;make TO as input
AGAIN: SETB TRO ;starts the counter
BACK: MOV A, TLO ;get copy of count TLO

ACALL CONV ;convert in R2, R3, R4

ACALL DISPLAY ;display on LCD

JNB TF0, BACK ;loop if TFO0=0

CLR TRO ;stop the counter 0

CLR TFO ;make TF0=0

SJMP AGAIN ;keep doing it

;converting 8-bit binary to ASCII
jupon return, R4, R3, R2 have ASCII data (R2 has LSD)

CONV : MOV B, #10 ;divide by 10
DIV AB
MOV R2,B ;save low digit
MOV B,#10 ;divide by 10 once more
DIV AB
ORL A,#30H ;make it ASCII
MOV R4 ,A ;save MSD
MOV A,B
ORL A,#30H ;jmake 2nd digit an ASCII
MOV R3,A ;save it
MOV A,R2 _
ORL A,#30H ;make 3rd digit an ASCII
MOV R2,A ;save the ASCII
RET

LT g

1 Hz clock TO

By using 60 Hz we can generate seconds, minutes, hours.

Note that on the first round, it starts from 0, since on RESET, TLO = 0.
To solve this problem, load TLO with -60 at the beginning of the program.

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C

LIl

input
pin 3.4

CT=1

overflow flag

Timer 0 ’—|j)
external TLO |- TFO

.

TRO reload
| THO l

TFO goes high
when FF =0

JLITL
Timer] —
external
input r
pin 3.5

TR1 " reload
I THI1 |

C/T=1 TF1 goes high
when FF =0

Figure 9-6. Timer 0 with External Input (Mode 2)

Figure 9-7. Timer 1 with External Input (Mode 2

As another example of the application of the timer with C/T = 1, we can
feed an external square wave of 60 Hz frequency into the timer. The program will
generate the second, the minute, and the hour out of this input frequency and dis-
play the result on an LCD. This will be a nice digital clock, but not a very accu-

rate one.

Before we finish this chapter, we need to state two important points.

. You might think that the use of the instruction “JNB TFx, target” to mon-
itor the raising of the TFx flag is a waste of the microcontroller’s time. You
are right. There is a solution to this: the use of interrupts. By using interrupts
we can go about doing other things with the microcontroller. When the TF flag
s raised it will inform us. This important and powerful feature of the 8051 is
discussed in Chapter 11.

. You might wonder to what register TR0 and TR1 belong. They belong to a
register called TCON, which is discussed next.

Table 9-2: Equivalent Instructions for the Timer Control Register (TCON)

For Timer 0

SETB TRO = SETB

TCON.4

CLR TRO = CLR

TCON.4

SETB TF0O = SETB

TCON.5

CLR TF0O = CLR

TCON.5

For Timer 1

SETB TRI SETB
CLR TRI CLR

TCON.6
TCON.6

SETB TF1 = SETB

TCON.7

CLR TFl1 = CLR

TCON.7

TCON: Timer/Counter Control Register

[TFi | TRL | TFO | TRO [IE1 | IT1 | IEO [1o |

TCON register

In the examples so far we have seen the use of the TR0 and TR1 flags to
turn on or off the timers. These bits are part of a register called TCON (timer con-
trol). This register is an 8-bit register. As shown in Table 9-2, the upper four bits
are used to store the TF and TR bits of both Timer 0 and Timer 1. The lower four
bits are set aside for controlling the interrupt bits, which will be discussed in
Chapter 11. We must notice that the TCON register is a bit-addressable register.
Instead of using instructions such as “SETB TR1” and “CLR TR1”, we could use
“SETB TCON.6” and “CLR TCON. 6", respectively. Table 9-2 shows replace-
ments of some of the instructions we have seen so far.

The case of GATE =1 in TMOD

Before we finish this section we need to discuss another case of the GATE
bit in the TMOD register. All discussion so far has assumed that GATE = 0. When
GATE = 0, the timer is started with instructions “SETB TRO0” and “SETB TR1”,
for Timers 0 and 1, respectively. What happens if the GATE bit in TMOD is set
to 1?7 As can be seen in Figures 9-8 and 9-9, if GATE = 1, the start and stop of the
timer are done externally through pins P3.2 and P3.3 for Timers 0 and 1, respec-
tively. This is in spite of the fact that TRx is turned on by the “SETB TRx”
instruction. This allows us to start or stop the timer externally at any time via a
simple switch. This hardware way of controlling the stop and start of the timer can
have many applications. For example, assume that an 8051 system is used in a
product to sound an alarm every second using Timer 0, perhaps in addition to
many other things. Timer 0 is turned on by the software method of using the
“SETB TRO” instruction and is beyond the control of the user of that product.
However, a switch connected to pin P3.2 can be used to turn on and off the timer,
thereby shutting down the alarm.

CciT=0
=
—O-T O——»
CiT=1
TOIN
Pin 3.2
'
TRO
N
Gate 1L~
INTO Pin
Pin 3.2
L

XTAL >
OSCILLATOR +12

igure 9-8. Timer/Counter 0

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 259

XTAL
OSCILLATOR

Gate

Tﬁ Pin
Pin 3.3

Figure 9-9. Timer/Counter 1

Review Questions

. Who provides the clock pulses to 8051 timers if C/T = 0?

. Who provides the clock pulses to 8051 timers if C/T = 1?

. Does the discussion in Section 9.1 apply to timers if C/T = 1?

. What must be done to allow P3.4 to be used as an input for T1, and why?
. What is the equivalent of the following instruction? “SETB TCON. 6"

SECTION 9.3: PROGRAMMING TIMERS 0 AND 1IN 8051 C

In Chapter 7 we showed some cxamples of C programming for the 8051.
In this section we study C programming for the 8051 timers. As we saw in the
cxamples in Chapter 7, the general-purpose registers of the 8051, such as RO - R7,
A, and B, are under the control of the C compiler and are not accessed directly by
C statements. In the case of SFRs, the entire RAM space of 80 - FFH is accessi-
ble directly using 8051 C statements. As an example of accessing the SFRs direct-
ly, we saw how to access ports PO - P3 in Chapter 7. Next, we discuss how to
access the 8051 timers directly using C statements.

Accessing timer registers in C

In 8051 C we can access the timer registers TH, TL, and TMOD directly
using the reg51.h header file. This is shown in Example 9-20. Example 9-20 also
shows how to access the TR and TF bits.

Example 9-20

in between. Use Timer 0, 16-bit mode to generate the delay.
Solution:
#include <reg51.h>

void TODelay (void) ;
void main (void)

{
while (1) //repeat forever
{
P1=0x55; //toggle all bits of p1
TODelay () ; //delay size unknown
P1=0xAA; //toggle all bits of p1
TODelay () ;

}
}

void TODelay ()

TMOD=0x01; //Timer 0, Mode 1

TL0=0x00; //load TLO

THO0=0x35; //load THO

TRO=1; //turn on TO

while (TF0==0) ; //wait for TFO to roll over
TR0=0; //turn off TO

TF0=0; //clear TFO

FFFFH - 3500H = CAFFH = 51967 + 1 = 51968

51968 x 1.085 ps = 56.384 ms is the approximate delay.

8051

PO LEDs

/

Write a 8051 C program to toggle all the bits of port P1 continuously with some delay

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C

261

Calculating delay length using timers

As we mentioned in Chapter 7, the delay length depends on three factors:
(a) the crystal frequency, (b) the number of clocks per machine cycle, and (c) the
C compiler. The original 8051 used 1/12 of the crystal oscillator frequency as one
machine cycle. In other words, each machine cycle is equal to 12 clocks periods
of the crystal frequency connected to the X1 - X2 pins. The time it takes for the
8051 to execute an instruction is one or more machine cycles, as shown in
Appendix A. To speed up the 8051, many recent versions of the 8051 have
reduced the number of clocks per machine cycle from 12 to four, or even one. For
example, the AT89C51/52 uses 12, while the DS5000 uses 4 clocks, and the
DS89C4x0 uses only one clock per machine cycle. As we mentioned carlier in this
chapter, the 8051 timers also use the crystal frequency as the clock source. The
frequency for the timer is always 1/12th the frequency of the crystal attached to
the 8051, regardless of the 8051 version. In other words, for the AT89C51/52,
DS5000, or DS89C4x0 the duration of the time to execute an instruction varies,
but they all use 1/12th of the crystal’s oscillator frequency for the clock source to
the timers. This is done in order to maintain compatibility with the original 8051
since many designers use timers to create time delay. This is an important point
and needs to be emphasized. The C compiler is a factor in the delay size since var-
ious 8051 C compilers generate different hex code sizes. This explains why the
timer delay duration is unknown for Example 9-20 since none of the other factors
mentioned is specified.

Delay duration for the AT89C51/52 and DS89C4x0 chips

As we stated before, there is a major difference between the AT89C51 and
DS89C4x0 chips in term of the time it takes to execute a single instruction.
Although the DS89C4x0 executes instructions 12 times faster than the AT89C51
chip, they both still use Osc/12 clock for their timers. The faster execution time
for the instructions will have an impact on your delay length. To verify this very
important point, compare parts (a) and (b) of Example 9-21 since they have been
tested on these two chips with the same speed and C compiler.

Timers 0 and 1 delay using mode 1 (16-bit non auto-reload)

Examples 9-21 and 9-22 show 8051 C programming of the timers 0 and 1
in mode 1 (16-bit non-auto reload). Examine them to get familiar with the syntax.

Timers 0 and 1 delay using mode 2 (8-bit auto-reload)

Examples 9-23 through 9-25 shows 8051 C programming of timers 0 and
1 in mode 2 (8-bit auto-reload). Study these examples to get familiar with the syn-
tax.

Example 9-21

Write an 8051 C program to toggle only bit P1.5 continuously every 50 ms. Use

Timer 0, mode 1 (16-bit) to create the delay. Test the program (a) on the AT89C51 and |

(b) on the DS89C420. |
|

Solution:

#include <reg51.h>
void TOMlDelay (void) ;
sbit mybit=P1%5;

void main (void)

{
while (1)
{
mybit=~mybit; //toggle P1.5
TOM1lDelay () ; //Timer 0, mode 1(l6-bit)
}
}

(a) Tested for AT8IC51, XTAL=11.0592 MHz, using the Proview32 compiler

void TOM1Delay (void) 1

{
TMOD=0x01; //Timer 0, mode 1(16-bit)
TLO=0XFD; //load TLO
THO=0x4B; //load THO
TRO=1; //turn on TO
while (TF0==0) ; //wait for TFO to roll over
TRO=0; //turn off TO
TF0=0; //clear TFO
}

(b) Tested for DS89C420, XTAL=11.0592 MHz, using the Proview32 compiler

void TOMlDelay (void)

{

TMOD=0x01; //Timer 0, mode 1(16-bit)
TLO=0xXFD; //load TLO

THO=0x4B; //load THO

TRO=1; //turn on TO

while (TF0==0) ; //wait for TFO to roll over
TR0=0; //turn off TO

TF0=0; //clear TFO

}

FFFFH — 4BFDH = B402H = 46082 + 1 = 46083

Timer delay = 46083 x 1.085 ps = 50 ms

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 263

Example 9-22

Write an 8051 C program to toggle all bits of P2 continuously every 500 ms.
Timer 1, mode 1 to create the delay.

Solution:
J/tested for DS89C420, XTAL = 11.0592 MHz, using the Proview32 compiler

#include <reg5l1l.h>
void Ti1MlDelay (void) ;
void main(void)
{
unsigned char x;
P2=0x55;
while (1)
{
P2=~P2; //toggle all bits of P2
for (x=0;x<20;X++)
T1lMlDelay () ;

}

void T1MilDelay (void)
{
TMOD=0x10; //Timer 1, mode 1(l6-bit)
TL1=0XFE; //load TL1
TH1=0xAS5; //load TH1
TR1=1; //turn on T1
while (TF1==0) ; //wait for TF1l to roll over
TR1=0; //turn off T1
TF1=0; //clear TF1

ASFEH = 42494 in decimal
65536 — 42494 = 23042

23042 x 1.085 pus = 25 ms and 20 x 25 ms = 500 ms

NOTE THAT 8051 TIMERS USE 1/12 OF XTAL FREQUENCY,
REGARDLESS OF MACHINE CYCLE TIME.

Example 9-23

Write an 8051 C program to toggle only pin P1.5 continuously every 250 ms. Use
Timer 0, mode 2 (8-bit auto-reload) to create the delay.

Solution:

//tested for DS89C420, XTAL = 11.0592 MHz, using the Proview32 compiler

#include <reg51.h>
void TOM2Delay (void) ;
sbit mybit=P1%5;

void main(void)

{

unsigned char x, y;

while (1)
{
mybit=~mybit; //toggle P1.5
for (x=0;x<250;%X++) //due to for loop overhead
for (y=0;y<36;y++) //we put 36 and not 40
TOM2Delay () ;
}
}
void TOM2Delay (void)
{
TMOD=0x02; //Timer 0, mode 2(8-bit auto-reload)
THO=-23; //load THO (auto-reload value)
TRO=1; //turn on TO
while (TF0==0) ; //wait for TFO0 to roll over
TR0=0; //turn off TO
TF0=0; //clear TFO
}
256 — 23 =233

23 % 1.085 pus =25 ps
25 ps x 250 x 40 = 250 ms by calculation.

However, the scope output does not give us this result. This is due to overhead of the
for loop in C. To correct this problem, we put 36 instead of 40.

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 265

Example 9-24

Write an 8051 C program to create a frequency of 2500 Hz on pin P2.7. Use Timer I,

mode 2 to create the delay.

Solution:

J/tested for DS89C420, XTAL = 11.0592 MHz, using the Proview32 compiler

#include <regb5l.h>
void T1M2Delay (void) ;
sbit mybit=pP2"7;
void main(void)
{
unsigned char x;
while (1)

{

mybit=~mybit;

T1M2Delay () ;

}

void T1M2Delay (void)
{

TMOD=0x20;
TH1=-184;
TR1=1;

while (TFl==
TR1=0;

TF1=0;

1 /2500 Hz = 400 ps
400 ps /2 =200 ps

200 ps / 1.085 ps = 184

//toggle P2.7

//Timer 1, mode 2(8-bit auto-reload)
//load THI1 (auto-reload value)

//turn on T1

//wait for TF1 to roll over

//turn off T1

//clear TF1

8051

2500 Hz

AgipEpEpEpSpEpNy =

Example 9-25

A switch is connected to pin P1.2. Write an 8051 C program to monitor SW and create
the following frequencies on pin P1.7:

SW=0: 500 Hz

SW=1: 750 Hz

Use Timer 0, mode 1 for both of them.

Solution:

//tested for AT89CS51/52, XTAL = 11.0592 MHz, using the Proview32 compiler
#include <reg51.h>

sbit mybit=P1°5;

sbit SW=P1"7;

void TOMlDelay (unsiged char);

void main(void)

{
SW=1; //make P1.7 an input
while (1)
{
mybit=~mybit; //toggle P1.5
if (SW==0) //check switch
TOM1Delay (0) ;
else

TOM1Delay (1) ;
}
}
void TOMlDelay (unsigned char c)

{
TMOD=0x01;
if (c==0)
{
TLO=0x67; //FC67
THO=0xXFC;

TLO=0x9A; //FD9A
THO=0XFD;
}
TRO=1;
while (TF0==0) ;
TRO=0;
TF0=0;

}

FC67H = 64615
65536 — 64615 = 921
921 x 1.085 ps = 999.285 us

1/(999.285 ps x 2) = 500 Hz

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 267

C Programming of timers 0 and 1 as counters

In Section 9.2 we showed how to use timers 0 and | as event counters. A
timer can be used as a counter if we provide pulses from outside the chip instead
of using the frequency of the crystal oscillator as the clock source. By feeding
pulses to the TO (P3.4) and T1 (P3.5) pins, we turn Timer 0 and Timer | into count-
er 0 and counter 1, respectively. Study the next few examples to see how timers 0
and 1 are programmed as counters using the C language.

Example 9-26

Assume that a 1-Hz external clock is being fed into pin T1 (P3.5). Write a C program
for counter 1 in mode 2 (8-bit auto reload) to count up and display the state of the TL1
count on P1. Start the count at OH.

Solution:

#include <reg51.h>
sbit Tl = P3"5;
void main(void)

{

T1l=1; //make T1 an input
TMOD=0x60 ; //
TH1=0; //set count to 0
while (1) //repeat forever
{
do
{
TR1=1; //start timer
P1=TL1; //place value on pins
}
while (TF1==0) ; //walt here
TR1=0; //stop timer
TF1=0; //clear flag
}
}
8051
P1 is connected to 8 LEDs. Pl to
LEDs

T1 (P3.5) is connected to a

1-Hz external clock. ___r_l_’_l_ P3.5

1 Hz T1

il

268

U A

Example 9-27
Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a C program
for counter 0 in mode 1 (16-bit) to count the pulses and display the THO and TLO reg-
isters on P2 and P1, respectively.
Solution:
#include <reg51.h>
void main(void)
{
TO=1; //make TO an input
TMOD=0x05 ; //
TLO0=0; //set count to 0
THO=0; //set count to 0
while (1) //repeat forever
{
do
{
TRO=1; //start timer
P1l=TLO; //place value on pins
P2=THO; //
}
while (TF0==0) ; //wait here
TRO0=0; //stop timer
TFO0=0;
}
}
8051
pil= P1 and
— P2 to
i — | LEDs
1 Hz clock TO |P3.4 B

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 269

Example 9-28

Assume that a 2-Hz external clock is being fed into pin T1 (P3.5). Write a C program
for counter 0 in mode 2 (8-bit auto reload) to display the count in ASCIL. The 8-bit
binary count must be converted to ASCII. Display the ASCII digits (in binary) on PO,
P1, and P2 where PO has the least significant digit. Set the initial value of THO to 0.

Solution:

To display the TL1 count we must convert 8-bit binary data to ASCIL. See Chapter 7
for data conversion. The ASCII values will be shown in binary. For example, ‘9’ will
show as 00111001 on ports.

#include <reg5l1.h>
void BinToASCII (unsigned char);
void main ()

{
unsigned char value;
Tl=1;
TMOD=0x06 ;
THO=0;
while (1)
{
do
{
TRO=1;
value=TLO;
BinToASCII (value) ;
}
while (TF0==0) ;
TRO0=0;
TF0=0;
}
}
void BinToASCII (unsigned char value) //see Chapter 7

{

unsigned char x,dl,d2,d3;
x = value / 10;

dl = value % 10

d2 = x % 10;

d3 = x / 10

PO = 30 | di;

P1 = 30 | d2;

P2 = 30 | d3

270

T T

T T

Example 9-29

P2, respectively.

Solution;

#include <reg51.h>
void ToTime (unsigned char) ;
void main()

{

unsigned char val;

TO=1;
TMOD=0x06 ; //T0, mode 2, counter
THO=-60; //sec = 60 pulses
while (1)
{
do
{
TRO=1;
sec=TLO;

ToTime (val) ;

J

while (TF0==0) ;

TRO=0;
TF0=0;
}
}
void ToTime (unsigned char wval)
{

unsigned char sec, min;
min = value / 60;

sec = value % 60;

Pl sec;

P2 min;

o

8051
—
Pll— P1 and
— P2 to
_I—L_J_I_p3‘4 P2 LEDs
60 Hz clock TO -

By using 60 Hz, we can generate seconds, minutes, hours.

Assume that a 60-Hz external clock is being fed into pin TO (P3.4). Write a C program
for counter 0 in mode 2 (8-bit auto-reload) to display the seconds and minutes on P1 and

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C

271

For Examples of Timer 2, see the
www.MicroDigitalEd.com Web site.

Review Questions

Who provides the clock pulses to 8051 timers if C/T = 0?
Indicate the selection made in the statement “TMOD = 0x20”.
In mode 1, the counter rolls over when it goes from _ to
In mode 2, the counter rolls over when it goes from __ to
In the statement “TH1 = -2007, find the hex value for the TH reglster
TFO0 and TF1 are part of register ___

In Question 6, is the register bit-addressable?

Show how to monitor the TF1 flag for high in 8051 C.

2O =B Mg el B

SUMMARY

The 8051 has two timers/counters. When used as timers they can generate
time delays. When used as counters they can serve as event counters. This chap-
ter showed how to program the timers/counters for various modes.

The two timers are accessed as two 8-bit registers: TLO and THO for
Timer 0, and TL1 and TH1 for Timer 1. Both timers use the TMOD register to set
timer operation modes. The lower 4 bits of TMOD are used for Timer 0 and the
upper 4 bits are used for Timer 1.

There are different modes that can be used for each timer. Mode 0 sets the
timer as a 13-bit timer, mode 1 sets it as a 16-bit timer, and mode 2 sets it as an 8-
bit timer.

When the timer/counter is used as a timer, the 8051’s crystal is used as the
source of the frequency; when it is used as a counter, however, it is a pulse outside
the 8051 that increments the TH, TL registers.

PROBLEMS
SECTION 9.1: PROGRAMMING 8051 TIMERS

1. How many timers do we have in the 80517

O

2. The timers of the 8051 are -bit and arc designated as and
3. The registers of Timer 0 are accessed as and
272

=1
i‘

I

I1.

12,

13.

14.
13.
16.

17.

18.

19.

20.

The registers of Timer 1 are accessed as and

In Questions 3 and 4, are the registers bit-addressable?

The TMOD register is a(n) __ -bit register.

What is the job of the TMOD register?

True or false. TMOD is a bit-addressable register.

Find the TMOD value for both Timer 0 and Timer 1, mode 2, software start /
stop (gate = 0), with the clock coming from the 8051°s crystal.

. Find the frequency and period used by the timer if the crystal attached to the
8051 has the following values.
(a) XTAL = 11.0592 MHz (b) XTAL = 20 MHz
(c) XTAL = 24 MHz (d) XTAL = 30 MHz
Indicate the size of the timer for each of the following modes.
(a) mode 0 (b)y mode I (c) mode 2
Indicate the rollover value (in hex and decimal) of the timer for each of the fol-
lowing modes.
(a) mode 0 (b) mode 1 (c) mode 2
Indicate when the TF1 flag is raised for each of the following modes.
(a) mode 0 (b) mode 1 (c) mode 2
True or false. Both Timer 0 and Timer 1 have their own TF.

True or false. Both Timer 0 and Timer 1 have their own timer start (TR).
Assuming XTAL = 11.0592 MHz, indicaie when the TFO flag is raised for the
following program.

MOV TMOD, #01

MOV TLO, #12H

MOV THO, #1CH

SETB TRO
Assuming that XTAL = 16 MHz, indicate when the TFO flag is raised for the
following program.

MOV TMOD, #01

MOV TLO, #12H

MOV THO, #1CH

SETB TRO
Assuming that XTAL = 11.0592 MHz, indicate when the TFO flag is raised for
the following program.

MOV TMOD, #01

MOV TLO, #10H

MOV THO, #0F2H

SETB TRO
Assuming that XTAL = 20 MHz, indicate when the TFO flag is raised for the
following program.

MOV TMOD, #01

MOV TLO, #12H

MOV THO, #1CH

SETB TRO
Assume that XTAL = 11.0592 MHz. Find the TH1,TL1 value to generate a
time delay of 2 ms. Timer 1 is programmed in mode 1.

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 273

21. Assume that XTAL = 16 MHz. Find the THI,TLI value to generate a time
delay of 5 ms. Timer 1 is programmed in mode 1.

22. Assuming that XTAL = 11.0592 MHz, program Timer 0 to generate a time
delay of 2.5 ms.

23. Assuming that XTAL = 11.0592 MHz, program Timer 1 to generate a time
delay of 0.2 ms.

24. Assuming that XTAL = 20 MHz, program Timer | to generate a time delay of
100 ms.

25. Assuming that XTAL = 11.0592 MHz, and we are generating a square wave on
pin P1.2, find the lowest square wave frequency that we can generate using
mode 1.

26. Assuming that XTAL = 11.0592 MHz, and we are generating a squarc wave on
pin P1.2, find the highest square wave frequency that we can generate using
mode 1.

27. Assuming that XTAL = 16 MHz, and we are generating a square wave on pin
P1.2, find the lowest square wave frequency that we can genecrate using
mode 1.

28. Assuming that XTAL = 16 MHz, and we are generating a square wave on pin
P1.2, find the highest square wave frequency that we can generate using
mode 1.

29. In mode 2 assuming that TH1 = FIH, indicate which states timer 2 goes
through until TF1 is raised. How many states is that?

30. Program Timer 1 to generate a squarc wave of 1 kHz. Assume that XTAL =
11.0592 MHz.

31. Program Timer O to generate a square wave of 3 kHz. Assume that XTAL =
11.0592 MHz.

32. Program Timer 0 to generate a squarc wave of 0.5 kHz. Assume that XTAL =
20 MHz.

33. Program Timer | to generate a squarc wave of 10 kHz. Assume that XTAL =
20 MHz.

34. Assuming that XTAL = 11.0592 MHz, show a program to generatc a 1-second
time delay. Use any timer you want.

35. Assuming that XTAL = 16 MHz, show a program to generate a 0.25-second
time delay. Use any timer you want.

36. Assuming that XTAL = 11.0592 MHz and that we arc generating a square
wave on pin P1.3, find the lowest square wave frequency that we can generate
using mode 2.

37. Assuming that XTAL = 11.0592 MHz and that we are generating a square
wave on pin P1.3, find the highest squarc wave frequency that we can gener-
ate using mode 2.

38. Assuming that XTAL = 16 MHz and that we arc gencrating a square wave on
pin P1.3, find the lowest square wave frequency that we can generate using
mode 2.

39. Assuming that XTAL = 16 MHz and that we arc generating a squarc wave on
pin P1.3, find the highest square wave frequency that we can generate using
mode 2.

40. Find the value (in hex) loaded into TH in each of the following.

274

(a) MOV THO#-12 (b) MOV THO#-22
(c) MOV THO,#-34 (d) MOV THO#-92
(¢) MOV THI1#120 () MOV THI,#-104
(g) MOV THI#222 (h) MOV THI1,#67
41. In Problem 40, indicate by what number the machine cycle frequency of 921.6
kHz (XTAL = 11.0592 MHz) is divided.
42. In Problem 41, find the time delay for each case from the time the timer starts
to the time the TF flag is raised.

SECTION 9.2: COUNTER PROGRAMMING

43. To use the timer as an event counter we must set the C/T bit in the TMOD reg-
ister to (low, high).

44. Can we use both of the timers as event counters?

45. For counter 0, which pin is used to input clocks?

46. For counter 1, which pin is used to input clocks?

47. Program Timer 1 to be an event counter. Use mode 1 and display the binary
count on P1 and P2 continuously. Set the initial count to 20,000.

48. Program Timer 0 to be an event counter. Use mode 2 and display the binary
count on P2 continuously. Set the initial count to 20.

49. Program Timer 1 to be an event counter. Use mode 2 and display the decimal
count on P2, P1, and PO continuously. Set the initial count to 99,

50. The TCON register is a(n) -bit register.

51. True or false. The TCON register is not a bit-addressable register.

52. Give another instruction to perform the action of “SETB TR0”.

SECTION 9.3: PROGRAMMING TIMERS 0 AND 1 IN 8051 C

53. Program Timer 0 in C to generate a square wave of 3 kHz. Assume that XTAL
=11.0592 MHz.

54. Program Timer [in C to generate a square wave of 3 kHz. Assume that XTAL
=11.0592 MHz.

55. Program Timer 0 in C to generate a square wave of 0.5 kHz. Assume that
XTAL = 11.0592 MHz.

56. Program Timer 1 in C to generate a square wave of 0.5 kHz. Assume that
XTAL = 11.0592 MHz.

57. Program Timer 1 in C to be an event counter. Use mode 1 and display the bina-
ry count on P1 and P2 continuously. Set the initial count to 20,000.

58. Program Timer 0 in C to be an event counter. Use mode 2 and display the bina-
ry count on P2 continuously. Set the initial count to 20.

CHAPTER 9: 8051 TIMER PROGRAMMING IN ASSEMBLY AND C 2758

;‘
I

L

ANSWERS TO REVIEW QUESTIONS

SECTION 9.1: PROGRAMMING 8051 TIMERS

1. Two

2. 2,8

3. 8

4. False

5. 0010 0000 indicates Timer 1, mode 2, software start and stop, and using XTAL for frequency.
6. FFFFH to 0000
7. FFH to 00

8. 200 is 38H; therefore, TH1 = 38H

9. 2ms/1.085 ms = 1843 = 0733H where TH = 07H and TL = 33H
10. 100 ms/1.085 ms = 92 or 5CH; therefore, TH = 5CH

SECTION 9.2: COUNTER PROGRAMMING

The crystal attached to the 8051
The clock source for the timers comes from pins TO and T1.
Yes
We must use the instruction “SETB P3.4” to configure the T1 pin as input, which allows the
clocks to come from an external source. This is because all ports are configured as output
upon reset.

5. SETBTRI

SECTION 9.3: PROGRAMMING TIMERS 0 AND 1 IN 8051 C

The crystal attached to the 8051
Timer 2, mode 2, 8-bit auto reload
FFFFH to 0

FFHto 0

38H

TMOD

Yes

while (TF1==0);

1.
2.
3.
4.
S.
6.
7.
8.

L
s

|

